
L~~~~~~~~~~~~~- .-~ A7 -RW .NI PRWOEC RI !ENT ETE O YAI-CCFG
ON OPTIMAL CONTYROL OF A BROWNIAN MOTION.(U YNAI- /611I JU~~~'N "I I LIAO OS-l0a
LCUS-82-1 AFOSR-Tf1-0116Auum...uubuOR-R-2-SA N



AIFOi-TR- 82-0884

Lefschetz Center for Dynamical Systems D I

B
ini~ZMR3UON STATEMENT

Awvdfa puibli zdeasug

Dutftbutiofl Unliitd



ON OPTIMAL CONTROL OF A BROWNIAN MOTION

by

Yu-Chung Liao

June 1982 LCDS #82-17

DTlCSELECTE
OCT 18 SE 1

IU

B

AItR Trao@71 FFCE IgITICME~C~ AS'
10TTIaT 1 TROkN ITAA M TO DTIC

This technic'-' report has been revi#Ued and is
,LpubiC rel ss I W A 190-12

Distribution is uxilit.
4

)ILTTim J. KcE=P fv~jniZ~~
Chief, Technlic8 a OUtO DvsoI DTIBUTON STATEMN A

Approve fmr Publia rmeg
Disribution Unflnalt&

-

_



lI

ON OPTIMAL CONTROL OF A BROWNIAN MOTION

by

Yu-Chung Liao
Division of Applied Mathematics

Lefschetz Center for Dynamical Systems Accession For
Brown University NTIS GRA&I

Providence, Rhode Island 02912 DTIC TAB [
Unannounced Q
Justificatio?%

By

Distribution/

Availability Codes

Avail and/or

June 1982 Dist Special

This research has been supported in part by the Air Force Office of
Scientific Research under Contract #AF-AFOSR 81-0116 and in part by
the National Science Foundation under Contract #MCS 79-03554.



ON OPTIMAL CONTROL OF A BROWNIAN MOTION

by

Yu-Chung Liao

2t Abstract

-Gw,4e;_'a controlled diffusion process which evolves as a reflected

Brownian motion under each control action. A switching cost is incurred

when the control action is switched. The control problem turns out to be

a sequential decision problem, i.e., to find a sequence of optimal stopping

times to switch control. The dynamic programming equation for a discounted

cost criterion is a quasi-variational inequality. By allowing the discount

factors tend to zero, we show a new Q.V.I. has a solution that serves as a

potential function to give direction to attain the optimality for a long-run

average cost criterionj

Key words: diffusion, switching cost, quasi-variational inequality,

potential function, long-run average cost.
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1. Introduction

Optimal control of reflected Brownian motion arises naturally from

input-output systems. Faddy [4] models a dam by a Brownian motion with two

reflecting barriers. Puterman [9] uses diffusion processes to model production

and inventory processes. In both cases they assume the existence of a

stationary optimal strategy and start from there. In Rath [10] a Bang-Bang

style strategy is proved to be optimal among stationary strategies by using a

random walk to approximate Brownian motion. Chernoff and Petkau [2] prove

that the optimal conditions are satisfied by certain strategies. All those

papers discuss the case of linear holding costs and two control actions.

Here, we consider a controlled diffusion process which evolves as a

reflected Brownian motion. A switching cost is incurred when the control action

is switched. Since the instants of switches are crucial, the optimal control

problem turns out to be a sequential decision problem. We can write the

dynamic programming equation for a discounted cost criterion by the principle

of dynamic programming in Fleming-Rishel [5]. It is a quasi-variational in-

equality which can be solved by the penalty method in Bensoussan-Lions [1]. f
By allowing the discount factors tend to zero, a new quasi-variational inequality

arises as the dynamic programming equation for a long-run average cost criterion.

We solve it to prove the existence of a stationary optimal strategy.

2. Model

Let (A,F,P) be a probability space on which a standard Brownian notion

is defined. (F t}e 0  is the increasing family of complete a-fields generatedttt
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by Wt. Let S be the set o F t-stopping times. Let A = {1,2,...M) be

the set of control actions. Under control action i, the controlled process

evolves as the reflected Brownian motion

(1) R f(x+d.t+a.Wt)

where Rf is a function on C[O,-) defined as

Rf(w)(t) = w(t) - inf{O; w(s), s < t)

for all w 6 C[O,). The operating and holding cost is f(x,i) per unit

time if the state of the process is x and action i is used. When switch-

ing from action i to j a switching cost C(ij) is incurred. Since

infinitely many switches in a finite time interval will make the total cost

blo up, we can, without loss of generality, define a strategy u = {s(n),u(n)}n= I

to be admissible if

i) s(n) E S for all n,

ii) 0 < s(n) < s(n~l) for all n

iii) s(n) * as n w.p.l.,

iv) u(n):Q * A is F (n)-measurable and u(n) j u(n+l) for all n.

Then given initial state (x,i) and admissible strategy u the control process

is

i t < s0),
u(t) fu(n) s(n) t < s(n~l)

and the controlled process is

|1Ij i i 4I I -- I _ _



t t
Rf(x+fodu(s) ds+ 0 a U(s) dWs).

We assume the following conditions throughout this paper.

(2) a. jO iCA,

(3) d. < 0 i E A,

(4) f(',i):R + -* R+ is bounded measurable and nondecreasing i E A,

(5) C(i,j) > 0 and C(ij) + C(j,l) > C(i,l) i 0 j and j 0 1.

Here, (3) is a stability condition. See Kushner [7] and [8].

3. Preliminary Results.

To use variational inequality techniques for solving sequential decision

problems has been studied extensively in [1]. For completeness we briefly dis-

cuss some results in a form which is suited for use in the next section.

Let G be an open subset of R% v >O0, p !. and D=A We
dx

denote the space of all functions f on G such that

1 11 Ie XDkf(x)l| <

k-O LP(G)

by WInPI'(G) and Wn'P(G) if 0 - O. Since the generalized It6's formula in

[1] holds for the diffusion processes with reflecting boundary in Stroock-

Varadhan (13], the following theorem is proved by the penalty method in [1].

we state it without proof.
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Let I Qbe the indicator function of the set Q' ii G be the

sup-norm in 17(G) and

Li=-1a 2D 2-_d.D i EA.2 i 1

Theorem 1. Let G = [0,B), r > 0, f E CDRG, v E R and h satisfX

(a) h E ,o()

(6) (b) Dh(0) = 0,

(c) v <h(B).

Then the variational inequality

(a) Z E W 2',(G) l<p<40,

(b) L Z +rZ- f<O0 a.e. on G,

(7 c) Z -h <0,
(d) (b)x._(c) = 0,

(e) DZ(O) =0

(f) Z(B) v

assa unique solution for any fixed i E A. In addition we have

()ILZII G :1 lvi .2 11 f G11 dil11 Dhl11 G' +2 ai 11 (D h) 11 G

(9) Z(X) -inf E (I -rt f(x(t))d t _rs; I h(x(s)) _r *
~SE 10{5T Sr



Here, x(t) is the process in (1), and t~ inf~t:x(t)=B}

Corollary 1. Given h E W 1'CO(G) and satisfy

there is a constant c and a sequence h such
n

2(10) that h satisfies (6), D h < c for all nn n

and hn . h as n -,.mc in W lM(G).

Then Theorem 1 holds. In this case, II(D'h)+ IG in (8) is replaced by
C, = ?4ax(O'c}.

Proof. Let Z n be the solution of (7) with respect to h n. By (8) there is

a subsequence of nx, still denoted by n, such that Z n -).Z weakly in

W 2'P(G) and strongly in W1'P(G). Hence Z satisfies (7), (8) and (9).

We have the same conclusions as in Corollary 1 when the Neumann boundary

condition (7e) is replaced by the Dirichiet boundary condition.

Corollary 2. Let G =[BB 21 and B I> 0. Then Corollary 1 is true if (7e)

and (7f) are replaced by

(e') Z(B) = v.i and v 1  h(B.) i - 1,2.

In case rlvil f Ilf~l6 for i = 1,2 then lvi in (8) can be removed,

(11) iLiZiI :S 21lf16 - dillI 1 2C

Another result from Robin [11] is

Theorem 2. Given f E 17(R+), r > 0, h bounded continuous on R. ke x(t)
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be the process in (1) and

(12) Z(x) = inE E {e erf(x(t))dt + e rh(x(s))}

Then Z is bounded continuous on RZ < h and

Z (x) = EjTe-r f(x(t))dt + e rTh(x(tr))

where

T = inf{t:Z(x(t)) = h(x(t))).

The next lemma gives useful estimates.

Lemmta 1. if both f and h in Theorem 2 are nondecreasing and non-nezative

then so is Z.

Proof. Given x > y then

Rf(x~d t~a.W )> Rf(y+d t~a.W )w.p.1.
1 t 1 t

By (12), it is clear that Z(x) > Z(y) > 0.j

Following the assumptions of Leimma 1 we have

0 c~ Z(x) -Z(y) < E X{fT rt f(x(t))dt + e-TC )} - Z(Y)

where

T iuf{t:x(t) =Y).
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By Karlin-Taylor 16],

E T= (-)

Hence

0 < Z(x) - Z(y) < - -Y f

and

(13) 0O<DZ (x) -IIfI
1R

Let

VO(x,i) = Exfe rtf(x(t),i)dt

and

V r (xi) =inf ExjfseOrtf(x~t),i)dt + ersM Vr- (x(s))lM 3>1
a xes 0  i M-1

where

1 1V (x) = min C(i,j) + Vr(x,j) M > 1.

By induction and Le0mma. 1, V r (x,i) is non-decreasing and non-negative for all

i and a. Hence

(14) 0 < rV(~)~--IfxiI,

NowM NVr(x) is satisfied by (10) when V. (x~J) iE 2 (It+) for all j C A.



By induction, we can choose boundary condition v v ~r (B) and use Corollary
U'

1 to show locally, hence globally, that

(a) V (X~i)EW' CR) i EA and m>O0,

(b) V r (x,i) - M r- (x) < 0 i E A and m > 1,
m i m-1

(15) (c) L iVr (x,i) + rVmr(x,i) - f(x,i) < 0 a.e. on R+ i E A and m > 0,
m

(d) (b)-(c) 0,

(e) DVr(O'j) =0 i EA.m

Here (a) comes from (11) and (14) because the upper bound in (12 is actually

independent of G. Let

v r (x,i) =inf Eu {e -rt f~~)ut)t+ e-rs(n) C(u(n-l)u(n))!
uEU fxx,),uf))d nL

where U is the set of all admissible strategies and C(u(0), u(1)) =C(i,u(l)).

r
Theorem 3. V (x,i) is the unique solution of the following quasi-variational

inequality

(a) Vr (x~i) E W2'w(R+) i E A,

(b) L Vr (x,i) + rV r(x,i) -f(x,i) < 0 a.e. i E A

(16) (c) Vr (x,i) ~M.v r (X) <10 iCEA.

(d) (b)x(c) =0,

(e) DV(O,i)O iC EA.
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Also Vt (x,i) is non-decreasing for all i and there is a constant K

independent of r such that

(17) IDV (x, i)I K

and

(18) J~ID 2V r(x, i) I J <.K for all i EA.

Proof. The same as in Evans-Freidman [3]: Vr(x,i) is the optimal cost
M

function to control the process with no more than in switches,

(19) (f rVr(x,j) 11 + <Ijjf(x,i)jI i E A
m RR

and

(20 Vr (x, i) -).V r(x~i) as inm .

uniformly on R+. Now all we need is to estimate D 2V r(y,i) for any y E

i EA and m >2. If

then there is a neighborhood G of y such that

i r r(21) L V C x,i) + rV,(x,i) - f(x,i) = 0 a.e. on G.

By (13) and (19), we have

(22)JID2 V (x i) 1 6-i 211 (Xl) 1 +
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In case

v r(Y' i) M.V Y

there is a set A' c A such that i £A',

Sr (y,i) = C(i,j) + Vr_ (Y'j) ~j E At
m

and

v ~~)< C(i,j) + V_1 (Yj) j j A' and i 0
m

By (5), we have

v r (y'j) < ?4 v r (Y~) j F A'.

So there is a neighborhood G of y on which V r (x'j) satisfies (21),

hence (22), for all j E A'. Thus,

(23) f xi n ~ e-r f(x(t))dt + e-r I h(x(s))

+e I V(X(T)i)~ on G
( r<sl. m

wheret

h(x) =min C(ij) r V~(x J) on G

and

T inf{t:x(t) 6 3G and x(t) > 0).

By Corollary 2, (11) and (22), we have



(1.24) 111V~(~)I r 6jf (x, i)f

From (14), (22) and (24) there is a constant K independent of r and mn

such that

DV;(x.i) 4 K

and

< K.

So the theorem is proved by allowing m -~win (15).

4. Minimum Average Cost Problem.

The total cost to control the process by strategy u up to time T

*with initial state (x,i) is

J(u~x,i)T) s-E = ~ t,~)d + I C(u(n-l),u(n)).
LXIL ILJU n=l {s(n)ITI

The long run average cost is

(25) e~~x~i) lim inf J(u,x,iT)

The related dynamic prograing equation to minimize 8(u,x,i) is solved as

Theorem 4. Theorem 5 is a verification theorem that shows that there is

stationary optimal strategy such that the minimi average cost can be attained

as a real limit in (25).
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By (19) and (20), there are i E A, 0 E R and a subsequence of r,

still denoted by r, such that

Sr (O,j) <Vr(04) i EA

and

rVr(Oj) 8as r -- 0.

By Theorem 3, we have

0 < V r(x,i) Vr(x,i) -V (,j

<C(i,j) + Vr (x,j) - Jr(0,j)

<C(ij) + Kx.

Since Vr(xi) has the same derivatives as VTr(x,i) has, we have

(a) V" (x~i) E W 2 ,cc(R+) i E A,

(b) LiV(x,i) + rY (x,i) -f(x,i) < 0 a~e. on R* 1 6 A,

(26) (c) Vr(x,i) M ?i V (x) < 0 i 6 A,

(d) (b) x(c) =0.

(e) 6V(0, i) 0 i EA.

By (17), there is a function V(x,i) and a subsequence of r, still denoted

by r, such that

V (x,i) *V(x,i)

uniorly n ompctsubsets of e as r -. 0 for all i.
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Theorem 4. V(x,i) satisfies

(a) V(x,i) E W 2'p~p(R*) p > 1, p~ 0,

(b) L V(X,i) + e - f(x,i) < 0 a.e. on R' i CA,

(C) V(Xi) - M.iV(X) < 0,

(d) (b)x(c) = 0, *

(e) DV(O,i) = 0 i C A

and

(27) 0 < V(X,i) < C(i,j) . x.

Proof. Let r e0 in (26).

Let g be a twice continuous differentiable function on Rsuch that

g(x) > 0 onR+

Dg(0) = 0,

g~) ex x >B

and

g(x) + 1Dg(x)l + ID 2g(x)j < K, x < B

for some constants B and K'.

Loma 1.2. For any u,x and i, E u x(T) is a bounded function of T.

Proof. By (3), there is an a > 0 and 0 0 such the'-

ri + im 0 CA.

Let u *(s(n),u(n)) nuI with s(s) a-for some a >0. By Stroock-

Varadhan (211,

1 -7 . . -I~WW I
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h (T) EU .g(x(T))

- g(x) + E.,{~ QlJ}Isnl Otgxt)

-g(x) + E , JT_.Lu(t) g(x(t))dt
x 0

is finite for all T. So

dh(T) = u LuT g(x(T)

x Eif jx(T)>B).2 U(T)ct *d(~IexT

Hence Dh(T) < 0 if

1 2

for some constant IV'. Thus

For any admissible strategy u, we have

E u g(x(T)) liZ ,1$U)5~(()

< *" g(x).

This proves the lema.
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Let u* ( s(n),u(n)) be defined by

s~i) - inf{t>O:V(x(t),i) M - x~)I

d~l) = min~j CA:V(x(s(l)),i) - C(ij) + V(x(s(l)),j))

and

s(n) - inf{t>s(n-1):V(x(t),u(n-1)) M ?u(nlI)V(x(t))).

u(n) - mint{J FA:V (x(s (n)) u(n-1)) -C(u(n.-1),J) + V(x(s(n)).J))

for n > 1.

Theorem S. e(u*,xi) - e < e~uxi) for any admissible strategy u.

Proof. By Theorem 4,

E .f V(x(T),u(T)) - V(x~i))
X,1

(27) = E. X, i {V(x(T s(n)).u(17\s(n)) - V(xCD%~(n-l)).u(T/ x(n-1))))
xiI

= E U s fliJAs(fin) 0n'Vxt,~-) - 1.S(f)!TjC(u~n-l)iu(n))}

where u(M% (0) 1 i Hence

a( 2 8 ) - J.C j j j f l * - x .1

T T

and then

(29) * *e(u, X,i)

by Lmmms 2. To prove 0 1 c 8(uDZ,i) for any u, we simp~ly have inequlity at

(27). (28) and (29).

serk. u* is a stationary strategy.
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